권혜승 선생님 동영상 강의 "공학수학"
Linear Algebra
• 1강 Basic Concepts and Algebraic operations for Matrices 
• 2강 Linear Systems of Equations. Gauss Elimination 
• 3강 Applications 
• 4강 Vector Space. Linear Independence 
• 5강 Rank of a Matrix 
• 6강 Fundamental Theorem for linear systems 
• 7강 Determinants 
• 8강 Rank in terms of determinants. Cramer's Rule 
• 9강 Inverse of a matrix. Gauss-Jordan Elimination 
• 10강 Eigenvalues and Eigenvectors Ⅰ 
• 11강 Eigenvalues and Eigenvectors Ⅱ 
• 12강 Some Application of Eigenvalue Problems 
• 13강 Inner Product Space 
• 14강 Special Real matrices :
Symmetric, Skew-symmetric and Orthogonal matrices 
• 15강 Special Complex matrices :
Hermitian, Skew-Hermitian and Unitary matrices 
• 16강 Quadratic Form. Hermitian Form 
• 17강 Similarity of Matrices. Basis of Eigenvectors 
• 18강 Diagonalization. Principal Axes Theoremdf 
• 19강 Marcov Chain 
Vector Calculus
• 1강 Vector Algebra in Space. Inner Product 
• 2강 Cross Product. Scalar and Vector functions and Fields 
• 3강 Vector Calculus 
• 4강 Curves. Tangents. Arc length 
• 5강 Gradient of a Scalar Field, Directional Derivative 
• 6강 Divergence and Curl of a Vector Field 
• 7강 Line Integral 
• 8강 Line Integrals Independent of Path 
• 9강 Exactness and Independence of Path 
• 10강 Double Integrals 
• 11강 Green's Theorem in the plane 
• 12강 Green's Theorem: Applications 
• 13강 Surfaces 
• 14강 Surface Integral of Scalar Functions 
• 15강 Surface Integrals of Vector Functions 
• 16강 Triple Integrals. Divergence Theorem of Gauss 
• 17강 Divergence Theorem: Applications 
• 18강 Potential theory: The theory of solutions of Laplace’s equation 
• 19강 Stokes' Theorem